SÍNTESIS, ESTUDIO TEÓRICO Y CONFORMACIONAL DE NUEVOS DERIVADOS DE 2-TRIFLUOROMETILCROMONA: 3-CIANOMETIL Y 3-AMINOMETIL 2-TRIFLUOROMETILCROMONAS

Christian D. Alcívar León, ^{1*} Oscar E. Piro, ² Gustavo A. Echeverria, ² Sonia E. Ulic^{1,3} y Jorge L. Jios ⁴

¹CEQUINOR, Dpto. de Química, Fac. Cs. Exactas, UNLP, CC. 962 (1900) La Plata; ²Dpto. de Física, Fac. de Cs. Exactas, UNLP e Instituto IFLP (CONICET, CCT-La Plata), C.C. 67, 1900 La Plata; ³Dpto. Cs. Básicas, UNLP, Rutas 5 y 7 (6700) Luján; Argentina. ⁴ Unidad Laseisic-Plapimu (CIC-UNLP), Dpto. de Química, Fac. Cs. Exactas, UNLP, Camino Centenario e/505 y 508, CP1897, Gonnet, E-mail: cris_davidec@hotmail.com * Becario Senescyt – Ecuador

Introducción:

Las 2-trifluorometilcromonas, debido a su extendida conjugación π , adoptan una estructura plana y constituyen la base estructural para la síntesis de nuevos heterociclos sustituidos. Los derivados de trifluorometilcromona resultan relevantes para nuestro estudio, ya que el grupo trifluorometilo (-CF₃) le infiere a la estructura características farmacológicas diversas, potenciando en algunos casos la bioactividad de análogos estructurales.¹ En este trabajo se presenta el análisis experimental y teórico de dos nuevos derivados de cromona trifluorometil sustituidos: 3-aminometil-2-trifluorometilcromona (1) y 3-cianometil-2-trifluorometilcromona (2) (Figuras a y b, respectivamente).

Metodología:

Síntesis de (1) y (2): Los métodos de síntesis son similares a los reseñados en la literatura,^{2,3} y las condiciones optimizadas de temperatura, solvente y tiempos de reacción utilizados son los detallados en la Figura 1.

Figura 1. Esquema de síntesis para la obtención de cromonas 2-trifluorometil-3-metil sustituidas, i) KCN, DMSO, 3h, 60 °C; ii) NH₃ (I), EtOH absoluto, 3h, - 30 °C

Caracterización: Se determinaron los espectros vibracionales (FT-IR y Raman), los espectros de RMN (¹H, ¹³C y ¹⁹F) y GC-MS.

Cálculos químico-cuánticos: Fueron realizados con métodos DFT (B3LYP) implementados en el programa GAUSSIAN 09, empleando el conjunto de funciones base 6-311++G(d,p).

Resultados:

Propiedades estructurales

Los cálculos computacionales para **(1)** y **(2)** predicen confórmeros con geometría molecular de mínima energía, que poseen simetría puntual C_1 . Para el compuesto **1**, los ángulos diedros calculados para el grupo trifluorometilo (-CF₃) y para el grupo aminometilo (-CH₂NH₂) son: ϕ (O12C15C16F23) = 134°, ϕ (C11C14C17N19) = -70° y ϕ (C14C17N19H20) = -84,20° (Figura a). En **2**, el grupo trifluorometilo (-CF₃) adopta una configuración *gauche* respecto al plano del anillo pirano (ϕ (C1C5C15F17) = 178,6°), mientras que el grupo cianometilo se dispone perpendicular al plano del anillo (ϕ (C5C1C20C21) = 79°, Figura b).

Figura a.

Figura b.

Espectroscopia vibracional

Se determinaron los espectros experimentales IR y Raman de (1) y (2) que se muestran en la Figura 2. En la Tabla 2 se reportan las frecuencias de los grupos funcionales más característicos para ambas moléculas.

Figura 2. Espectro IR de (a) y Raman (b) del sólido de (1) y (2).

Tabla 2. Frecuencias experimentales (cm⁻¹) y asignación de los modos de vibración fundamentales para los grupos funcionales más representativos de (1) y (2).

	Experimental				
Grupo Funcional	1		2		Asignación ^[c]
	IR ^[a]	Raman ^[b]	IR ^[a]	Raman	
-NH ₂	3328(md)	3330 (< 1)			v_{as}
-CN			2265(d)	2266 (8)	ν_{s}
-CH ₂ -	2845(d)	2840 (< 1)	2997(d)	2936 (18)	ν_{s}
-C=O	1659(mf)	1661 (85)	1653(mf)	1651 (100)	v_{as}
-C=C-	1612(f)	1653 (100)	1611(f)	1611 (8)	ν _s
-CF ₃	1239(mf)	1072 (6)	1159(mf)	1067 (< 1)	v_{as}

[a] md, muy débil; d, débil; f, fuerte; mf, muy fuerte. [b] Intensidades Raman entre paréntesis. [c] v_s , v_{as} , representan estiramiento simétrico y antisimétrico, respectivamente.

Espectroscopía de RMN

La asignación de los desplazamientos químicos de los espectros experimentales de ¹H, ¹³C y ¹⁹F de RMN de **(1)** y **(2)** se realizó en base a compuestos similares⁴ y con heterociclos de geometría molecular análoga.

Difracción de rayos X de 3-cianometil-2-trifluorometilcromona

Estructura Cristalina: La Figura 2 muestra un diagrama de la molécula en el estado sólido resuelta por métodos de difracción de rayos-X. La sustancia cristaliza en el grupo espacial monoclínico P2₁/c, con constantes de celda unidad: a = 7,6164 (8) Å, b = 19,7984 (2) Å, c = 7,8494 (1) Å, β = 114.01(1)^o y Z = 4 moléculas por celda. La estructura fue resuelta por métodos directos a partir de 1543 reflexiones con I>2 σ (I) y refinada por cuadrados mínimos a un factor de acuerdo de R1=0,0456. Debido a la extendida deslocalización del enlace π , el fragmento orgánico es plano. Uno de los átomos de flúor del grupo trifluormetilo yace sobre el plano molecular.

Figura 2. Diagrama ORTEP de 3-cianometil-2-trifluorometilcromona que muestra los elipsoides de desplazamientos atómicos al 30% de probabilidad.

Conclusiones:

- Las frecuencias vibracionales calculadas para (1) y (2) presentan un buen grado de acuerdo con los resultados experimentales.
- Los parámetros estructurales de (2), determinados por difracción de rayos-X, se correlacionan satisfactoriamente con los predichos por los cálculos de química cuántica, resultando coincidente la orientación del grupo nitrilo respecto al plano del heterociclo.

Referencias:

(1) Gaspar, A.; Matos, M. J.; Garrido, J.; Uriarte, E.; Borges, F. Chemical Reviews **2014**, *114*, 4960.

(2) Xie, L.; Zhao, C.-h.; Zhou, T.; Chen, H.-f.; Fan, B.-t.; Chen, X.-h.; Ma, J.-z.; Li, J.-y.; Bao, Z.-y.; Lo, Z.; Yu, D.; Lee, K.-H. *Bioorganic & Medicinal Chemistry* **2005**, *13*, 6435.

(3) Bevan, P. S.; Ellis, G. P.; Hudson, H. V.; Romney-Alexander, T. M.; Williams, J. M. *Journal of the Chemical Society, Perkin Transactions* **1 1986**, 1643.

(4) Castañeda, I. C. H.; Ulic, S. E.; Védova, C. O. D.; Metzler-Nolte, N.; Jios, J. L. *Tetrahedron Letters* **2011**, *5*2, 1436.